Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia # Estimation of COVID-19 Impact in Virginia March 31st, 2021 (data current to March 29th – 31st) Biocomplexity Institute Technical report: TR 2021-032 **BIOCOMPLEXITY INSTITUTE** biocomplexity.virginia.edu #### **About Us** - Biocomplexity Institute at the University of Virginia - Using big data and simulations to understand massively interactive systems and solve societal problems - Over 20 years of crafting and analyzing infectious disease models - Pandemic response for Influenza, Ebola, Zika, and others #### **Points of Contact** Bryan Lewis brylew@virginia.edu Srini Venkatramanan srini@virginia.edu Madhav Marathe marathe@virginia.edu Chris Barrett@virginia.edu #### **Biocomplexity COVID-19 Response Team** Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Andrei Bura, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Arindam Fadikar, Joshua Goldstein, Stefan Hoops, Ben Hurt, Sallie Keller, Ron Kenyon, Brian Klahn, Gizem Korkmaz, Vicki Lancaster, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Fanchao Meng, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, SS Ravi, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Aaron Schroeder, Stephanie Shipp, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie #### Overview • Goal: Understand impact of COVID-19 mitigations in Virginia #### Approach: - Calibrate explanatory mechanistic model to observed cases - Project based on scenarios for next 4 months - Consider a range of possible mitigation effects in "what-if" scenarios #### Outcomes: - Ill, Confirmed, Hospitalized, ICU, Ventilated, Death - Geographic spread over time, case counts, healthcare burdens #### Key Takeaways Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions: - Case rates in Virginia have flattened and now have some growth - VA mean weekly incidence flat at 17.5/100K from 17/100K, US up (to 18.5 from 16.5 per 100K) - Progress is stalling, 84% of VA counties above mean rate of Summer 2020 - Projections shifting to growth across Commonwealth, boosted by B.1.1.7 - Recent updates: - Currently challenged to estimate the impact on hospitalizations and deaths, as increased rates from Variant B.1.1.7 interact with decreases from vaccination of the most susceptible to these outcomes - Johnson & Johnson included in vaccine schedule and Seasonal Effects adjusted for spring and summer - The situation continues to change. Models continue to be updated regularly. # Situation Assessment # Case Rate (per 100k) by VDH District #### Recent upticks across multiple districts - Majority of districts have plateaued or exhibit slow growth - Higher levels than early Spring 2020 Rappahannock Rapidan # Test Positivity by VDH District #### Weekly changes in test positivity by district - Some upticks/flattening in the positivity rates - Nearly 75% of counties still in Red or Yellow categories # Central Shenandoh 20 Feirca William 10 Feirfax Feirf # County level test positivity rates for RT-PCR tests. Green: Test positivity < 5.0% (or with < 20 tests in past 14 days) Yellow: Test positivity 5.0%-10.0% (or with <500 tests and <2000 tests/100k and >10% positivity over 14 days) Red: >10.0% and not meeting the criteria for "Green" or "Yellow" https://data.cms.gov/stories/s/q5r5-gjyu #### District Trajectories **Goal:** Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory **Method:** Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory #### Hockey stick fit | Trajectory | Description | Weekly Case Rate (per 100K) bounds | # Districts
(prev week) | |-------------|---|------------------------------------|----------------------------| | Declining | Sustained decreases following a recent peak | below -0.9 | 11 (23) | | Plateau | Steady level with minimal trend up or down | above -0.9 and below 0.5 | 11 (6) | | Slow Growth | Sustained growth not rapid enough to be considered a Surge | above 0.5 and below 2.5 | 13 (6) | | In Surge | Currently experiencing sustained rapid and significant growth | 2.5 or greater | 0 (0) | # District Trajectories – last 10 weeks | eclining
lateau
low Growth | 11 (23)
11 (6) | | | 28 | 27 | | | |---|--|--|--|--|--|--|--| | | 11 (6) | | | 11 18 25 08 15 22 06 15 22
Feb Mar
2021
Report Date | 29 11 18 25 08 15 22 08 15 27 Feb 2921 Report Date | | | | ow Growth | | | | Rappahannock Rapidan - Plateau - casastook - Cappa mare - from date | Fairfax - Slow Growth - Gasactor - Galage rest - Fram date | Arlington - Slow Growth Casestate | 77 Wgnus | | ov Groven | 13 (6) | | | 28 10 11 18 25 08 25 22 06 15 22 February Date | 29 11 18 25 08 15 22 08 15 27 28 15 27 20 18 20 20 20 20 20 20 20 20 20 20 20 20 20 | 28 28 28 29 29 31 38 25 27 68 15 27 29 No. | 12 No. | | n Surge | 0 (0) | | Central Shenandoah - Plateau Compt Comp | Rappahannock - Declining Coversions From date | Prince William - Plateau 100 - Cesticott - Floring from 100 | Alexandria - Slow Growth General Disc. Thurst disc. Thurst disc. | 00
20 - | | tories of states in | d case rate (per 100K) n label & chart box ed by Reproductive | Allegrany - ricted - Cancyling Cancylin | Blue Ridge - Slow Growth South Constitution of the o | Chickahominy - Slow Growth Company of the | Name | Three Rivers - Declining Carcatalas To | Hampton - Slow Growth | | 20 20 29 | - Cast SOM - Charge Print - Trans dole Tra | 120 — Scientific Charge Finish — "Charge Finish — "Torror dole" 100 101 102 102 103 102 103 102 103 103 102 103 103 102 103 103 102 103 103 103 103 103 103 103 103 103 103 | 200 Control Reference (Control R | 00 - Constitution C | 0 - Calindon Calindo | 90 Cosesystem, | | | Mount Rogers - Slow Growth 70 70 70 70 70 70 70 7 | West Piedmont - Declining De | | Crater - Declining Caponing Copyright Cop | Western Tidewater - Slow Growth Consistent Consisten | Chesapeake - Declining 169 — Cossit/OVK 169 — Cropage frot 129 — Frie dee 129 129 120 120 120 120 120 120 120 120 120 120 | Portsmouth - Declining 10 | Norfolk - Slow Growth Casestion - Cases Rist - Frim sate | MUNIVERSITY of VIRGINIA # Emerging new variants will alter the future trajectories of pandemic and have implications for future control - Current evidence supports that new variants can: - Increase transmissibility - Increase severity (more hospitalizations and/or deaths) - Limit immunity provided by prior infection and vaccinations - Genomic surveillance remains very limited - Challenges ability to estimate impact in US to date and estimation of arrival and potential impact in future - B.1.1.7 is most frequent and well studied | ▼ Variants | | USA | | |-------------------------|------|-----------------------|--| | ▼ Variants | | USA | | | Select all Deselect all | 1.00 | | | | Sciect dii Sesciect dii | | | | | ☑ === 20A.EU1 | 0.75 | | | | 20A.EU2 | | | | | ☑ S:A626S | | | | | S:D80Y | 0.50 | | | | ✓ ■ S:L452R | | | | | S:N439K | | | | | S:N501 | 0.25 | | | | ☑ ■ S:Q677 | 0.23 | | | | ✓ S:S98F | | | | | S:V1122L | | | | | Lineages | of Conce | ern | | | | | | |-------------|------------------|-----------------------|------------------------------|-------------------|--------------------------------------|--|---| | LoC
name | PANGO
lineage | NextStrain
lineage | Other synonyms | Emergence date | Emergence location | Key AA substitutions in spike protein | Impact | | B.1.1.7 | B.1.1.7 | 20I/501Y.V1 | VOC 202012/01,
UK variant | September
2020 | Southeast England | H69-, V70-, N501Y, D614G,
P681H | Increased transmissibility; S gene target failure (SGTF) | | B.1.351 | B.1.351 | 20H/501Y.V2 | South African variant | October
2020 | Nelson Mandela Bay,
South African | L241-, L242-, A243-, K417N,
E484K, N501Y, D614G | loss of serum antibody neutralization | | P.1 | B.1.1.28 | 20J/501Y.V3 | Brazilian variant | July 2020 | Brazil | K417T, E484K, N501Y, D614G | Increased transmissibility; loss of serum antibody neutralization | | CAL.20C | B.1.429 | | | July 2020 | Southern California,
USA | W152C, L452R, D614G | loss of monoclonal antibody binding | | B.1.375 | B.1.375 | | | September
2020 | Massachusetts, USA | H69-, V70-, D614G | S gene target failure (SGTF) | #### NIH-NIAID Bacterial-Viral Bioinformatics Resource Center | Variant | Reported Cases | States | |---------|----------------|--------| | B.1.1.7 | 11,569 | 51 | | B.1.351 | 312 | 31 | | P.1 | 172 | 22 | Lineage Reports **Outbreak Info** #### **Lineage B.1.1.7** - B.1.1.7 has been detected in Virginia and has continued to rapidly grow. Current estimates suggest VA may be at 50% (national frequency at ~45%) - Virginia seems to keep pace with <u>estimates based on growth rates</u> indicating B.1.1.7 now predominates (eg reach 50% frequency) in late March - <u>Science</u> study using two-strain model supports that increased transmissibility, duration of infectiousness, or increased transmission in children best fit the epi data observed in the UK across regions. Some combination of all also likely. - <u>A recent study</u> finds B.1.1.7 to have longer duration which may be the source of increased transmissibility and has implications for isolation durations - <u>Evidence</u> continues <u>to mount</u> supporting increased risks of hospitalization and mortality for B.1.1.7 infected individuals Variant B.1.1.7 may cause longer infections with similar peak viral concentration compared to non-B.1.1.7 May contribute to B.1.1.7's increased transmissibility. https://dash.harvard.edu/handle/1/37366884 #### **Lineage B.1.351** - Emerging strain initially identified in South Africa shows signs of vaccine escape, currently 312 reported cases in 31 states (including 30 now in Virginia) - <u>Nature</u> study shows that plasma from the 2nd wave of infections in South Africa (with B.1.351 circulating) neutralized non-B.1.351 virus, suggesting targeted B.1.351 vaccines or treatments may remain effective against other variants - An additional study corroborates recent study based on clinical trial data shows that convalescent serum neutralization is highly predictive of actual immune protection for infection, thus B.1.351 may require booster vaccinations, and provides estimates for timing - <u>Another study in Cell supports previous report</u> that demonstrated that despite reduced antibody binding the Moderna vaccinated individuals able to neutralize the B.1.351 variant Despite reduced antibody binding to the B.1.351 RBD, sera from infected (acute and convalescent) and Moderna (mRNA-1273) vaccinated individuals were still able to neutralize the SARS-CoV-2 B.1.351 variant. Cell 31-Mar-21 Update: several recent reports and preprints, including studies conducted by Pfizer as well as Moderna, have produced similar findings in terms of vaccine potency against B.1.1.7 and B.1.1.298 variants but substantially less neutralization resistance by B.1.351 than we measured. Cell In cross-neutralization, 501Y.V2 virus was poorly neutralized by first wave plasma, with a 15.1-fold drop relative to 501Y.V2 neutralization by second wave plasma across participants. In contrast, second wave plasma cross-neutralization of first wave virus was more effective, showing only a 2.3-fold decline relative to first wave plasma neutralization of first wave virus. Nature Corroborating: calibrated to titers of human convalescent sera reported in each study, a robust correlation was seen between neutralizing titer and efficacy (p= 0.79) and binding antibody titer and efficacy (p = 0.93) $\underline{\mathsf{MedArxiv}}$ #### Lineage P.1 - Present in at least 172 cases in 22 states, shows signs of increased transmissibility and ability to evade immunity - Caused a <u>resurgence of hospitalizations in Manaus, Brazil</u> which has now caused more deaths in last 3 months than all of 2020 - Study in <u>Cell</u> shows P.1 may be less resistant to neutralization than B.1.351 #### **Lineage B.1.429** - Recently officially recognized as variant of concern, estimates of ~20% increase in transmission and some evasion of immunity - Initially found in Southern California, coincided with surge in Nov and Dec, <u>found</u> in over half of sequenced samples in LA #### **Lineage B.1.526** - Initially identified in NY and found increasingly as cases in NY / NJ increase - Recent study finds vaccine-elicited plasma neutralizes B.1.526 but less efficiently than other variants UNIVERSITY of VIRGINIA P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, confer similar increased affinity for ACE2. Despite this, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralization. Cell **B.1.526** SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. BioRxiv # Estimating Daily Reproductive Number #### March 29th Estimates | Region | Date
Confirmed R _e | Date Confirmed Diff Last Week | |------------|----------------------------------|-------------------------------| | State-wide | 0.994 | -0.013 | | Central | 1.037 | 0.014 | | Eastern | 1.014 | -0.030 | | Far SW | 1.122 | 0.273 | | Near SW | 0.884 | -0.021 | | Northern | 1.011 | -0.034 | | Northwest | 0.925 | -0.115 | #### Methodology - Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date - Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020) - Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill - 1. Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133 # Changes in Case Detection | Timeframe (weeks) | Mean
days | % difference from overall mean | |-------------------|--------------|--------------------------------| | July (26-30) | 6.2 | -8% | | Aug (31-34) | 4.9 | -26% | | Sept (35-38) | 4.5 | -32% | | Oct (39-43) | 4.5 | -33% | | Nov (44-47) | 4.5 | -33% | | Dec (48-49) | 4.2 | -37% | | Jan (00-04) | 3.9 | -41% | | Feb (05-08) | 3.4 | -49% | | Mar (09) | 3.5 | -48% | | Overall (13-09) | 6.7 | | #### **Test positivity vs. Onset to Diagnosis** Weeks (WW-YYYY) 31-Mar-21 #### Vaccine Acceptance in Virginia #### **Acceptance remains high:** - Proportion of Virginians that have already or would definitely or probably accept vaccination if offered today - Survey respondents are reporting high levels of vaccination of ~50% reflecting some bias of the mechanism - Nearly 80% Virginians have already or will choose to be vaccinated - Top reasons for hesitancy: side effects, safety, distrust Data Source: https://covidcast.cmu.edu #### Vaccine Hesitancy in Virginia # **Geographic distribution of Hesitancy clusters in Virginia:** - Rate of hesitancy assessed by those saying they would probably not, or definetly not take the vaccine if offered today - Total of 111 locations covering ~8.2M residents Red Clusters: High hesitancy rate Blue Clusters: Low hesitancy rate Data Source: https://covidcast.cmu.edu # Race and Ethnicity – Recent Rate Changes (per 100K) # Changes in Race and Ethnicity Rates (per 100k) in past two weeks - Two week change in population level rates - Black, Latinx and 2 or more races populations have much higher changes in rates; disparity is more pronounced in some regions than others - Based on 2019 census race-ethnicity data by county # Race and Ethnicity cases per 100K # Rates per 100K of each Racial-Ethnic population by Health District - Each Health District's Racial-Ethnic population is plotted by their Hospitalization and Case Rate - Points are sized based on their overall population size (overlapping labels removed) #### **Correlations between Infection Rates and Poverty** Based on Global Empirical Bayes smoothed point prevalence for week ending 2021-03-28. High poverty and high case rates overlap in southside (red), but high rates occur with low poverty in Northern and Richmond area (light blue) 31-Mar-21 # Other State Comparisons - Nearly all states are plateaued, with 3 states in surge, most plateaued states show signs of growth - Missouri in decline only because of data artifact in reporting #### Virginia and her neighbors - VA and nearly all in plateau with upward trends - Rates remain elevated, but significantly down from peaks in Jan # Current Week vs. Summer Mean (June-Aug 2020) Still some way to go to return to rates experienced during the summer of 2020 (June through August) Recent Incidence Compared to Weekly Summer Mean by County Mean: 7.98; Median: 1.14; IQR: 0.47-2.63 54% of US counties are above the summer mean case rate compared to 53% last week, slightly up Recent Incidence Compared to Weekly Summer Mean by County Mean: 2.6; Median: 1.96; IQR: 1.31-2.82 84% of VA counties are above the average rate for the summer compared to 81% last week, slightly up # Zip code level weekly Case Rate (per 100K) # Case Rates in the last week by zip code - Universities still dominate the top 10 list - Concentrations of high rates scattered across the Commonwealth - Some counts are low and suppressed to protect anonymity, those are shown in white Based on Spatial Empirical Bayes smoothed point prevalence for week ending 2021-03-28. Note: New color ramp scale and new ascertainment ratio of 2:1. # Risk of Exposure by Group Size and HCW prevalence # Case Prevalence in the last week by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people (group size 25) - **Group Size**: Assumes 2 undetected infections per confirmed case (ascertainment rate from recent seroprevalence survey), and shows minimum size of a group with a 50% chance an individual is infected by zip code (eg in a group of 26 in Harrisonburg, there is a 50% chance someone will be infected) - **HCW prevalence**: Case rate among health care workers (HCW) in the last week using patient facing health care workers as the denominator #### **Current Hot-Spots** #### Case rates that are significantly different from neighboring areas or model projections - **Spatial**: SaTScan based hot spots compare clusters of zipcodes with weekly case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations - **Temporal**: The weekly case rate (per 100K) projected last week compared to observed by county, which highlights temporal fluctuations that differ from the model's projections # Model Update – Adaptive Fitting # Adaptive Fitting Approach # Each county fit precisely, with recent trends used for future projection Allows history to be precisely captured, and used to guide bounds on projections **Model:** An alternative use of the same meta-population model, PatchSim - Allows for future "what-if" Scenarios to be layered on top of calibrated model - Eliminates connectivity between patches, to allow calibration to capture the increasingly unsynchronized epidemic #### **External Seeding:** Steady low-level importation - Widespread pandemic eliminates sensitivity to initial conditions - Uses steady 1 case per 10M population per day external seeding # Using Ensemble Model to Guide Projections Ensemble methodology that combines the Adaptive with machine learning and statistical models such as: - Autoregressive (AR, ARIMA) - Neural networks (LSTM) - Kalman filtering (EnKF) Weekly forecasts done at county level. Models chosen because of their track record in disease forecasting and to increase diversity and robustness. Ensemble forecast provides additional 'surveillance' for making scenario-based projections. Also submitted to CDC Forecast Hub. # Seroprevalence updates to model design # Several seroprevalence studies provide better picture of how many actual infections have occurred CDC Nationwide Commercial Laboratory Seroprevalence Survey estimated 7.6% [5.6% – 9.8%] seroprevalence as of Jan 7th – 21st up from 5.7% a month earlier # These findings are equivalent to an ascertainment ratio of ~2x in the future, with bounds of (1.3x to 3x) - Thus for 2x there are 2 total infections in the population for every confirmed case recently - This measure now fully tracks the estimated ascertainment over time - Uncertainty design has been shifted to these bounds (previously higher ascertainments as was consistent earlier in the pandemic were being used) https://covid.cdc.gov/covid-data-tracker/#national-lab #### Calibration Approach - Data: - County level case counts by date of onset (from VDH) - Confirmed cases for model fitting - Calibration: fit model to observed data and ensemble's forecast - Tune transmissibility across ranges of: - Duration of incubation (5-9 days), infectiousness (3-7 days) - Undocumented case rate (1x to 7x) guided by seroprevalence studies - Detection delay: exposure to confirmation (4-12 days) - Approach captures uncertainty, but allows model to precisely track the full trajectory of the outbreak - Project: future cases and outcomes generated using the collection of fit models run into the future - Mean trend from last 7 days of observed cases and first week of ensemble's forecast used - Outliers removed based on variances in the previous 3 weeks - 2 week interpolation to smooth transitions in rapidly changing trajectories #### **COVID-19 in Virginia:** 7 Dashboard Updated: 3/31/2021 Data entered by 5:00 PM the prior day. | Cases, Hospitalizations and Deaths | | | | | | |---|----------------------|----------------------|---------------------------------------|---------------------|--------------------| | Total Cases* 618,976 (New Cases: 1,035)^ | | | Total Total Hospitalizations** Deaths | | | | | | 26,455 | | 10,2 | 252 | | Confirmed†
483,775 | Probable†
135,201 | Confirmed†
25,073 | Probable†
1,382 | Confirmed†
8,602 | Probable†
1,650 | ^{*} Includes both people with a positive test (Confirmed), and symptomatic with a known exposure to COVID-19 (Probable). [†] VDH adopted the updated CDC COVID-19 confirmed and probable surveillance case definitions on August 27, 2020. Found here: https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/ | Ou | tbreaks | |------------------|---------------------------| | Total Outbreaks* | Outbreak Associated Cases | | 2,872 | 69,020 | ^{*} At least two (2) lab confirmed cases are required to classify an outbreak. | Testing (PCR Only) | | | |------------------------------|--|--| | Testing Encounters PCR Only* | Current 7-Day Positivity Rate PCR Only** | | | 6,482,193 | 5.8% | | ^{*} PCR" refers to "Reverse transcriptase polymerase chain reaction laboratory testing." ^{**} Lab reports may not have been received yet. Percent positivity is not calculated for days with incomplete data. | | Multisystem Inflammatory
Syndrome in Children | |--------------|--| | Total Cases* | Total Deaths | | 51 | 0 | ^{*}Cases defined by CDC HAN case definition: https://emergency.cdc.gov/han/2020/han00432.as Accessed 9:00am March 31, 2021 https://www.vdh.virginia.gov/coronavirus/ ^{**} Hospitalization of a case is captured at the time VDH performs case investigation. This underrepresents the total number of hospitalizations in Virginia. [^]New cases represent the number of confirmed and probable cases reported to VDH in the past 24 hours. #### Scenarios – Seasonal Effects - Variety of factors continue to drive transmission rates - Seasonal impact of weather patterns, travel and gatherings, fatigue and premature relaxation of infection control practices - Plausible levels of transmission can be bounded by past experience - Assess transmission levels at the county level since May 1, 2020 through September 30, 2020 - Use the highest and lowest levels experienced (excluding outliers) as plausible bounds for levels of control achievable - Transition from current levels of projection to the new levels over 2 months - Projection Scenario: - Fatigued Control: Highest level of transmission (95th percentile) increased by additional 5% #### Scenarios – Variant B.1.17 - New Variant B.1.1.7 is best understood and is in Virginia - **Transmission increase**: <u>Several</u> <u>different</u> <u>studies</u> have estimated the increase in transmission to be 30-55%, we use 50% increase from the current baseline projection - **Increased Severity**: <u>Not</u> included in this scenario yet. B.1.1.7 is known to cause more hospitalizations and deaths compared to previous SARS-CoV2 variants (see previous variant slides) however, evidence in US still sparse - Emergence timing: Gradual frequency increase reaching 50% frequency on March 30th, one week after the national estimate in MMWR report from CDC and refined by Andersen et al. - Variant planning Scenario: - VariantB117: Current projected transmissibility continues to increase through June to a level 50% more transmissible Estimated frequency from public genome repository with added analysis: 50% Current frequency used in model: 50% #### Scenarios – Vaccines - Projected vaccine schedules constructed using current administrations rates by dose and manufacturer for VA counties. - Assumed vaccine efficacies - Pfizer/Moderna: 50% after first dose, 95% after second dose - J &J: 67% efficacy after first (and only) dose - Average 3.5 week gap between Pfizer/Moderna doses - Delay to efficacy from dose assumed to be 14 days - Accelerated administration pace will reach vaccine hesitancy thresholds more quickly - Currently assuming 70% acceptance threshold for all counties - Under current administration rates, 50% of counties could hit this threshold - Might be earlier for counties with lower acceptance rate All doses (national) Virginia doses administered by manufacturer Anticipated Vax Hesitancy Impact #### Scenarios – Seasonal Effects and Vaccines Three scenarios combine these seasonal effects and use the current vaccine schedule - Adaptive: No seasonal effects from base projection - If things continue as they are - Adaptive-FatigueControl: Fatigued control seasonal effects - If we revert to slightly worst transmission experienced in last 6 months - Adaptive-VariantB117: Boosting of transmissibility from the emergence of B.1.1.7 - If new variants begin to predominate and boost transmission, this assumes current seasonal affects remain the same (eg like Adaptive) - Adaptive-FatigueControl-VariantB117: Fatigued control and txm boost from B.1.1.7 Counterfactuals with no vaccine ("NoVax") are provided for comparison purposes # Model Results # Outcome Projections #### **Confirmed cases** #### **Estimated Hospital Occupancy** #### **Daily Deaths** data, most recent dates are not complete #### **Daily Hospitalized** # District Level Projections: Adaptive #### **Adaptive projections by District** - Projections that best fit recent trends - Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario Cumberland ## District Level Projections: Adaptive-VariantB117 ### **Adaptive projections by District** - Projections that best fit recent trends - Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario # District Level Projections: Adaptive-FatigueControl ### **Adaptive projections by District** - Projections that best fit recent trends - Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario 400 1000 ### District Level Projections: Adaptive-FatigueControl-VariantB117 ### **Adaptive projections by District** - Projections that best fit recent trends - Daily confirmed cases rate (per 100K) by District (grey with 7-day average in black) with simulation colored by scenario Cumberland 1500 1500 1000 # Hospital Demand and Bed Capacity by Region #### Capacities* by Region – Adaptive-FatigueControl-VariantB117 COVID-19 capacity ranges from 80% (dots) to 120% (dash) of total beds https://nssac.bii.virginia.edu/covid-19/vmrddash/ #### If Adaptive-FatigueControl-VariantB117 scenario: - Southwest & Eastern regions may reach surge bed capacity in late May to late June - Eastern, Near SW approach initial bed capacity in June as well ^{*} Assumes average length of stay of 8 days 31-Mar-21 # Virginia's Progress on Population Immunity # Natural Immunity and Vaccines combine to produce a population level of immunity - How long immunity from infection with SARS-CoV2 lasts is not well understood but may vary based on severity of symptoms - We assume a conservative 6 month period of protection for these calculations - Vaccine induced immunity is likely to last longer, we assume indefinite protection - This also assumes that all administered vaccines remain protective against current and future novel variants - Population immunity depends on a very high proportion of the population getting vaccinated - We assume 90% of adults will ultimately get vaccinated in these calculations but slow rates may prevent this from happening before October 2021 ## Key Takeaways Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions: - Case rates in Virginia have flattened and now have some growth - VA mean weekly incidence flat at 17.5/100K from 17/100K, US up (to 18.5 from 16.5 per 100K) - Progress is stalling, 84% of VA counties above mean rate of Summer 2020 - Projections shifting to growth across Commonwealth, boosted by B.1.1.7 - Recent updates: - Currently challenged to estimate the impact on hospitalizations and deaths, as increased rates from Variant B.1.1.7 interact with decreases from vaccination of the most susceptible to these outcomes - Johnson & Johnson included in vaccine schedule and Seasonal Effects adjusted for spring and summer - The situation continues to change. Models continue to be updated regularly. ### References Venkatramanan, S., et al. "Optimizing spatial allocation of seasonal influenza vaccine under temporal constraints." *PLoS computational biology* 15.9 (2019): e1007111. Arindam Fadikar, Dave Higdon, Jiangzhuo Chen, Bryan Lewis, Srinivasan Venkatramanan, and Madhav Marathe. Calibrating a stochastic, agent-based model using quantile-based emulation. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1685–1706, 2018. Adiga, Aniruddha, Srinivasan Venkatramanan, Akhil Peddireddy, et al. "Evaluating the impact of international airline suspensions on COVID-19 direct importation risk." *medRxiv* (2020) NSSAC. PatchSim: Code for simulating the metapopulation SEIR model. https://github.com/NSSAC/PatchSim (Accessed on 04/10/2020). Virginia Department of Health. COVID-19 in Virginia. http://www.vdh.virginia.gov/coronavirus/ (Accessed on 04/10/2020) Biocomplexity Institute. COVID-19 Surveillance Dashboard. https://nssac.bii.virginia.edu/covid-19/dashboard/ Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ Biocomplexity page for data and other resources related to COVID-19: https://covid19.biocomplexity.virginia.edu/ ### Questions? #### **Points of Contact** Bryan Lewis brylew@virginia.edu Srini Venkatramanan srini@virginia.edu Madhav Marathe marathe@virginia.edu Chris Barrett@virginia.edu ### **Biocomplexity COVID-19 Response Team** Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Andrei Bura, Jiangzhuo Chen, Patrick Corbett, Clark Cucinell, Allan Dickerman, Stephen Eubank, Arindam Fadikar, Joshua Goldstein, Stefan Hoops, Ben Hurt, Sallie Keller, Ron Kenyon, Brian Klahn, Gizem Korkmaz, Vicki Lancaster, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Fanchao Meng, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, SS Ravi, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Aaron Schroeder, Stephanie Shipp, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Amanda Wilson, Dawen Xie # Supplemental Slides ### Date of Onset Reproductive Number ### Mar 20th Estimates | Region | Date of Onset
R _e | Date Onset Diff
Last Week | |------------|---------------------------------|------------------------------| | State-wide | 0.797 | 0.045 | | Central | 0.902 | 0.106 | | Eastern | 0.873 | 0.022 | | Far SW | 0.915 | 0.147 | | Near SW | 0.734 | -0.018 | | Northern | 0.809 | 0.043 | | Northwest | 0.710 | -0.081 | #### Methodology - Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date - Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020) - Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill 1. Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133 # Agent-based Model (ABM) ### **EpiHiper: Distributed network-based stochastic disease transmission simulations** - Assess the impact on transmission under different conditions - Assess the impacts of contact tracing #### **Synthetic Population** - Census derived age and household structure - Time-Use survey driven activities at appropriate locations #### **Detailed Disease Course of COVID-19** - Literature based probabilities of outcomes with appropriate delays - Varying levels of infectiousness - Hypothetical treatments for future developments # ABM Social Distancing Rebound Study Design ### Study of "Stay Home" policy adherence - Calibration to current state in epidemic - Implement "release" of different proportions of people from "staying at home" #### **Calibration to Current State** - Adjust transmission and adherence to current policies to current observations - For Virginia, with same seeding approach as PatchSim #### Impacts on Reproductive number with release - After release, spike in transmission driven by additional interactions at work, retail, and other - At 25% release (70-80% remain compliant) - Translates to 15% increase in transmission, which represents a 1/6th return to pre-pandemic levels